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Abstract 

The Remote  Agent  Experiment  (RAX) on the Deep 
Space 1 (DS1)  mission  was the first  time that an  arti- 
ficially  intelligent  agent  controlled  a NASA spacecraft. 
One of the key components of the  remote  agent  is  an 
on-board  planner.  Since  there was no opportunity for 
human  intervention  between  plan  generation  and  ex- 
ecution,  extensive  testing  was  required to ensure that 
the planner would not  endanger the spacecraft  by  pro- 
ducing  an  incorrect  plan, or by not  producing  a  plan 
at all. 
The  testing  process  raised  many  challenging  issues,  sev- 
eral of which remain  open.  The  planner  and  domain 
model  are  complex,  with  billions of possible inputs  and 
outputs. How does  one  obtain  adequate  coverage  with 
a  reasonable  number of test  cases? How does  one  even 
measure  coverage  for  a  planner? How does  one  deter- 
mine  plan  correctness?  Other issues arise from devel- 
oping a planner  in the context of a  larger  operations- 
oriented  project,  such as limited workforce and chang- 
ing  domain  models,  interfaces  and  requirements. As 
planning  systems are fielded in mission-critical  appli- 
cations, it becomes  increasingly  important to address 
these  issues. 
This  paper  describes  the  major  issues that we encoun- 
tered while testing the Remote  Agent  planner,  how we 
addressed  them,  and  what  issues  remain  open. 

Introduction 
As planning systems me fielded in operational environ- 
ments, especially mission-critical ones such as space- 
craft commanding, validation of those systems becomes 
increasingly important. Verification and validation of 
mission-critical systems is an area of much research and 
practice, but  little of that is applicable to planning sys- 
tems. 

Our experience in validating the Remote Agent plan- 
ner for operations  on  board DS1 raised a number of  key 
issues, some of which we have addressed and many of 
which remain open. The purpose of this paper is to 
share  those experiences and methods with the planning 
community at large, and  to highlight important  areas 
for future research. 

At the highest level there  are two ways that a planner 
can fail. It can fail to generate a plan within stated time 

bounds' (converge), or it can  generate an incorrect plan. 
Plans  are correct if they command the spacecraft in a 

manner that is consistent with accepted requirements. 
If the domain model entails the requirements, and  the 
planner enforces the model, then  the plans will be cor- 
rect. One must also validate the requirements them- 
selves to be sure  they  are complete and correct. 

Ideally we would prove that  the domain model en- 
tails the requirements: that is, prove that  the model 
will always (never) generate plans in which particular 
conditions hold. This may be possible for some require- 
ments, but is almost certainly undecidable in general. 

A more practicable  approach, and  the one we used  for 
FLAX, is empirical testing. We first had spacecraft engi- 
neers review the English requirements for completeness 
and accuracy. We then generated several plans from 
the model and developed an automated  test oracle to 
determine whether they satisfied the requirements as 
expressed in &st order  predicate logic. A second (triv- 
ial) oracle checked  for  convergence. If all of the  test 
cases converge, and  the  test cases are a representative 
sample of the possible output plans (i.e., have good cov- 
erage), then we have high confidence that  the planner 
will generate correct plans for all  inputs. 

The key issue in empirical testing is obtaining ade- 
quate coverage  (confidence) within the available testing 
resources. This requires a combination of strong  test se- 
lection methods that maximize the coverage for a given 
number of cases, and  strong  automation  methods that 
reduce the per-test cost. Complex systems such as plan- 
ners can potentially require huge numbers of test cases 
with correspondingly high testing  costs, so this issue is 
particularly critical for planners. 

We developed a number of test  automation  tools,  but 
it  still required six work-weeks to  run  and analyze 289 
cases. This high per-test cost was largely due  to human 
bottlenecks in analyzing results and modifying the  test 
cases and automations  in response to domain model 

'Since the search  space is exponential  there  will  always 
be  inputs for  which a  plan  exists but cannot  be  found  within 
the  time  limit.  Testing  needs to show that the planner  will 
converge  for  all of the most  likely inputs and a  high  propor- 
tion of the  remaining  ones. 
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changes. This  paper identifies the bottlenecks and sug- 
gests some ways of eliminating them. 

With only  289  cases it was  impossible to test  the 
planner as broadly as we would  have  liked. To keep 
the  test  suite manageable we focused the  test effort on 
the baseline goal set most  likely to be  used  in oper- 
ation.  This  strategy yields  high  confidence  in inputs 
around  the baseline but very low  confidence  in other 
goal sets.  This risk is appropriate when there is a base- 
line scenario that changes  slowly and becomes  fixed in 
advance of operations, as is common in space missions. 
Late changes to  the baseline could  uncover  new  bugs at 
a  stage  where  there is insufficient time to fix them. 

This risk  could be  reduced  with formal coverage met- 
rics. Such metrics can identify coverage gaps. Even if 
there  are insufficient test resources to plug those gaps 
the  tester  can  at least address the most critical gaps 
with a few  key tests, or inform the project manager as 
to which inputs to avoid.  Coverage metrics also enable 
the  tester  to maximize the coverage of a fixed  number 
of tests. 

To  our knowledge  no such metrics exist for planning 
systems and we did not have time to develop  one of our 
own for testing RAX. Instead we selected cases  accord- 
ing to  an informal coverage metric. Since test  adequacy 
could  only be assessed subjectively we used more cases 
than were probably necessary  in order to reduce the risk 
of coverage gaps. Formal coverage metrics for planning 
systems are sorely  needed to provide objective risk as- 
sessments and to  maximize coverage. 

The rest of this  paper is organized as follows. We 
first describe the RAX planner and domain model. We 
then discuss the  test case selection strategy,  the effec- 
tiveness of that strategy,  and  the  opportunities for  fu- 
ture research into coverage metrics and  test selection 
strategies. We then discuss the  test  automations we 
employed, the  demands for human involvement that 
limited their effectiveness, and suggest automations  and 
process improvements that could mitigate these factors. 
We conclude  with an evaluation of the overall effective- 
ness of the Remote Agent planner testing,  and  summa- 
rize the most important open issues  for planner testing 
in general. 

RAX Planner 
The Remote Agent planner (Muscettola et al. 1997)  is 
one of four components of the Remote Agent  (Nayak et 
al. 1999; Bernard et al. 1998). The other components 
are  the Executive  (EXEC) (Pel1 et al. 1997), Mission 
Manager  (MM), and Mode Identification and Reconfig- 
uration  (MIR) (Williams 8z Nayak  1996). 

When the Remote Agent  is  given a “start” command 
the EXEC puts  the spacecraft in a special idle state, in 
which it can  remain indefinitely without  harming the 
spacecraft, and requests a plan. The request consists of 
the desired plan start  time  and  the  current  state of the 
spacecraft. The desired start  time is the current time 
plus the amount of time allocated for generating a pian 
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(as determined by a  parameter,  and typically between 
one and four hours). 

The Mission  Manager extracts goals  from the mission 
profile, which contains all the goals  for the experiment 
and  spans several plan horizons. A special waypoint 
goal marks the end of each  horizon. The MM extracts 
goals  between the required start  time  and  the next way- 
point goal in the profile. These are combined with the 
initial state.  The MM invokes the planner with  this 
combined initial state  and  the requested plan start time. 

The planner expands the initial state  into a conflict- 
free ,plan using a heuristic chronological backtracking 
search. During the search the planner obtains addi- 
tional inputs from  two on-board software modules, the 
navigator (NAV) and  the  attitude control subsystem 
(ACS). These  are also  referred to as “plan experts.’’ 
When the planner decides to decompose certain nav- 
igation goal into subgoals, it invokes a NAV function 
that  returns  the subgoals as a function of the goal p e  
rameters. The planner queries ACS  for the  duration 
and legality of turn activities as a function of the  turn 
start  time  and end-points. 

The  fundamental  plan unit is a token. These  can rep- 
resent  goals, activities, spacecraft states,  and resources. 
Each  token  has a start  and  end timepoint and zero or 
more arguments. The tokens exist on parallel t i m e h e s ,  
which describe the  temporal evolution of some state or 
resource, or the activities and goals related to a partic- 
ular state. Some  RAX timelines are  attitude, camera 
mode, and power. The domain model  defines the token 
types and  the  temporal  and  parameter  constraints  that 
must  hold among  them. . t .  

Nominal Execution. If the planner generates a plan 
the EXEC executes it. Under nominal conditions the 
plan  is executed successfully and  the EXEC requests a 
new plan. This plan starts  at  the end of the current 
plan, which is also the  start of the next  waypoint in the 
profile. 

Off-nominal Execution. If a fault occurs during ex- 
ecution, and the EXEC  cannot recover  from it, it termi- 
nates the plan and achieves an idle state.  This removes 
the immediate threat of the fault. Depending  on the 
failure, it may  only be able to achieve a degraded idle 
state (e.g., the camera switch is stuck in the off posi- 
tion). It then requests a new plan that achieves the 
remaining goals  from the achieved idle state. As with 
other requests, the required start  time is the  current 
time plus the time allowed  for planning. 

RAX DS1 Domain Model.  The domain model  en- 
codes the knowledge  for commanding  a subset of the 
DS1 mission  known as “active cruise” that consists of 
firing the ion propulsion (IPS) engine continuously for 
long periods, punctuated every few days by optical nav- 
igation (opnav) images and  communication activities. 
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Goal Type 
waypoint 
navigate 

Comm 
power-estimate 
execactivity 
sepsegment 
max-thrust 
imagezoal 

Arguments 
HZN,EXPTSTART,EXPT-END 
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frequency (int),  duration  (int). 
slack (int) 
none 
amount (0-2500) 
type, file, int,  int, boo1 
vector (int), level (0-15) 
duration (0-inf) 
target  (int), exposures (0-20), 
exp. duration (0-15) 

Table 1: Goals 

1 state timeline I initial values I 
1 EXEC-ACTIVITY I 0,1,2 

ATTITUDE 

MICASJIEALTHY 

Earth, image, thrust vector 

true, false 
MICASSWITCH ready, off 

Table 2: Variable Initial State Timelines 

The goals defined by the domain model are shown 
in Table 1. The initial state consists of an initial to- 
ken for each of the timelines in the model. The legal 
start tokens for most timelines are fixed. Table 2 shows 
the  non-ked timelines and  the set of legal start to- 
kens  for each one. Finally, the domain model defines ll 
executable activities for commanding the IPS engine 
and MICAS camera, slewing (turning) the spacecraft, 
and injecting simulated faults. The  latter allow RAX 
to demonstrate  fault recovery capabilities, since actual 
faults were  unlikely to occur during the experiment. 

Test  Selection  Strategy 
The key test selection issue  is achieving adequate cov- 
erage with a manageable number of cases. Test selec- 
tion should ideally be guided by a coverage metric in 
order to ensure test adequacy. Coverage metrics gen- 
erally identify equivalence classes of inputs  that result 
in  qualitatively similar behavior with respect to  the re- 
quirement being verified. A set of tests  has full  coverage 
with respect to  the metric if it exercises the  test artifact 
on one input from each class. 

The verification and validation literature is  full of 
coverage metrics for mission-critical systems (e.g., code 
coverage), but to our knowledge there  are no  coverage 
metrics specifically suited to planning systems. The 
most relevant metrics are those for  verifying expert 
system rule bases. The idea is to backward chain 
through  the rule base to identify inputs  that would  re- 
sult in qualitatively different diagnoses (e.g., (O’Keefe 
& O’Leary 1993)). Planners have more complex search 
engines with correspondingly complex mappings, and a 
much richer input/output space. It is unclear how to in- 
vert that mapping in a way that produces a reasonable 
number of cases. 
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Since we did not have a planner-specific coverage 
aetric for RAX, we instead used a black-box approach 
that has been successful in several conventional sys- 
tems. The idea is to characterize the inputs as an 
n-dimensional parameter space and use orthogonal  ar- 
rays (Cohen et al. 1996) to select a manageable num- 
ber of cases that exercises all pair-wise combinations 
of parameter values. These  tests can be  augmented as 
needed with selected higher-order combinations. Since 
the number of pair-wise cases is logarithmic in the num- 
ber of parameters,  systems  with eighty or more pa- 
rameters can be tested with just a few hundred  test 
cases.  Specifically, the number of cases is proportional 
to (v/2) log, IC for IC parameters, each with w values (Co- 
hen et al. 1997). 

One disadvantage of this all-pairs selection strategy 
is that each test case differs from the  others  and from 
the nominal baseline input in several parameter values. 
That often made it difficult to determine why a test case 
failed, especially when the planner failed to converge. 

To address this problem we created a second test set 
in which each case differed in only one parameter value 
from the nominal baseline, which  was  known to pro- 
duce a d i d  plan. This “all-values” test  set exercised 
each parameter value at least once. If one of these cases 
failed, it was  obviously due to  the single changed param- 
eter. Its similarity to  the baseline case made  it easier 
to identify the causal defect. Analysis of failed all-pairs 
cases  was  simplified  by initially diagnosing them with 
the same causal defects as failed all-values cases with 
which they  shared a parameter value. Further diagno- 
sis was undertaken only if the all-pairs case still failed 
after fixing the bug. 

The reduction in analysis cost comes at the expense 
of additional test cases. The all-values test  set grows 
linearly in the number of parameter values. Specifically, 
there  are 1 + Cr=l(wi - 1) cases for n parameters where 
parameter i has vi values. 

RAX Test Selection 
We  now discuss how the all-pairs and all-values test 
selection strategies were  employed  for RAX. The plan- 
ner has  the following inputs: a set of goals, which are 
specified in a mission  profile and by the on-board navi- 
gator;  an initial state; a plan start time; slew durations 
as provided by the ACS plan expert;  and two plan- 
ner parameters-a seed for the pseudo-random number 
generator that selects among non-deterministic choices 
in the search, and “exec latency” which controls the 
minimum duration of executable activities. 

Each of these  inputs is  specified as a vector of one or 
more parameter values. The goals and initial states  are 
specified  by several parameters, and  the  other  inputs 
are specified  by a single parameter each. Several of the 
parameters, such as plan start  time, have infinite or 
very large domains. It is clearly infeasible to test  all 
of these values, so we selected a small  subset that we 
expected to lie at key boundary points. This selection 
was ad hoc based on the intuition of a test engineer 
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10 
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12 
13 
14 
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Parameter 
experiment start 
plan start 
profile 
random seed 
exec latency 
micas switch 
micas healthy 
micas healthy 
(prior plan) 
attitude 

end last thrust 
end  last window 
window duration 
window start 
targets/window 
imagesltarget 
image duration 
SEP goals 
SEP  thrust level 
SPE 
slew duration 

Values Tested 
3 
10 
12h, Gday, 2day 
3 seeds 
1, 4, 10 
off, ready 
true, false 
true, false, n/a 

SEP,  Image, 
Earth 
-2d. -Id. -6h 
-2d; -Id; 0 
1,2,3,4,6 hours 
0,  1, 2, 4 
2, 20 
3, 4, 5 
1, 8, 16 
6 configurations 
6. 12, 14 
1500,2400,2500 
30, 120, 300, 
400.600. 1200 

R a n g e l  
integer 
integer 
same 
integer 
0-10 
same 
same 
same 

same 

integer 
integer 
integer 
integer 
0-20 
3-5 
1-16 
infinite 
15 
2500 
30- 
1200 

Table 3: Tested  Parameters 

familiar with the domain model, or simply high, middle, 
and low values in the absence of any  strong intuition. 
Table 3 shows the full list of parameters,  the  range of 
values  each can  take,  and  the  subset of those values 
tested. 

The initial state  input consists of one  token for  each 
of the  initial  state timelines, with  the exception of the 
MICAS health timeline which can initially have  two 
adjacent tokens if the  health changed  while executing 
the prior plan. Parameters 6-9  specify the initial tokens 
and  arguments for  each of the non-fixed timelines shown 
in Table 2 . The  initial tokens can  start  at or before 
the plan start.  With  the exception of the  SEP  and 
navigation window timelines the  start times have  no 
impact  on  planning and  are  set to  the plan start for 
testing.  Parameters 10 and 11 control the  start times 
of the two exceptional tokens. 

There  are  two goal inputs: the mission  profile and  the 
goals requested by the onboard navigator. The naviga- 
tor goals  specify the  IPS  thrusting  it needs to achieved 
the desired trajectory,  and  the asteroid images it needs 
to determine the spacecraft position along that  trajec- 
tory. This  input is specified  by Parameters 14-18. 

The mission  profile input is  specified  by Parameters 
12, 13, and 19. These generate mutations of the two 
baseline  mission  profiles that we expected to use in 
operations: a 12 hour confidence-building  profile that 
contained a single optical navigation goal and no IPS 
thrusting goals, and a six day  primary profile that con- 
tained all of the goal types in Table I. The  mutations 

id 
2 
3 
8 

9 
10 
11 
17 
18 

- - 
- 

- 

r 
Parameter 
plan start 
profile 
micas healthy 
(prior plan) 
attitude 
end prior thrust 
end prior window 
SEP goals 
SEP thrust level 
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Constraint  Sets 
(rt 

1 
0 
12-hr 
none 

Earth 
0 
0 
null goal 
0 

lired value, 
2 

6-day 
none 

Earth 
0 
0 

m 

* 
* 

Table 4: Constraint  Sets 

3 
3 days 
6-day 
7 

* 
* 
* 
* 
* 

were designed to cover  possible changes to  the least 
stable elements of the profiles.  Since the profiles are 
finalized prior to operations, and we had control over 
their contents, focusing on  mutations of these profiles 
seemed a reasonable strategy. As it  turned  out, for  op- 
erational reasons out of our control the profile had to 
be changed radically at  the last minute. We reduced 
the horizon  from six days to two, deleted five goals and 
changed the  parameters  and absolute (but not relative) 
placement of others. The goal types  and overall  profile 
structure remained the same. Fortunately, no  new  bugs 
were  exposed  by the new  profiles since there would  have 
been little  time to fix them. Testing a  broader  range 
of profiles  would  have mitigated that risk. Broader  test 
strategies are discussed in the next section. 

The final input, specified  by Parameter 20, is the 
duration of spacecraft slews (turns) computed by the 
attitude control planning  expert (APE).  The planner 
invokes APE  to determine the  duration of each  slew 
activity as a function of the  turn end-points and  the 
spacecraft position at  the  start of the  turn. Since  posi- 
tion over time  (trajectory) is not known until flight, we 
had to  test  the range of possible  slew durations. 

RAX operational requirements imposed three con- 
straints among the parameter values as shown  in Ta- 
ble  4. The  test generator considered these  constraints 
to avoid generating impossible  cases. Constraint  set  one 
enforces the operational requirement that plans gener- 
ated from the 12 hour profile  will  never  have SEP goals, 
will start  at  the horizon start,  and will  have one of 
the four RAX idle states as the  initial  state.  The sec- 
ond  and third constraints enforce the following require- 
ment. The plan start  time is  always one of the horizon 
boundaries (horizon  waypoint goals) except when the 
exec requests a replan after a  plan failure. In  that case 
the exec  first  achieves one of the four FLAX idle states, 
which  becomes the initial state for the replan. So if 
the plan start is not a horizon boundary,  constraint  set 
two restricts the initial state  parameters to  the four  idle 
states.  When  the plan start is at the horizon boundary 
for the six-day plan, all initial states  are possible. This 
situation is  reflected  by the  third constraint set. 
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Total 
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all-pairs 
119 45 51 23 all-values 
126 41 61 24 

Y i. , 

Table 5: Test Set Sizes 

The all-pairs and all-values test cases  were generated 
automatically from the parameters and constraints de- 
scribed above. The constraints were satisfied by  gen- 
erating  one  test  set for each constraint  set. The sizes' 
of the resulting test  sets  are shown in Table 5. These 
were augmented by 22 cases to exercise the planner in- 
terfaces. 

Test Effectiveness 
The selected tests were ultimately successful in that  the 
on-board planner exhibited no faults  during the exper- 
iment, and  the  tests provided the DS1  flight managers 
with enough confidence to approve RAX for execution 
on DS1. However we still have no objective measure of 
the delivered reliability. It seems  likely that there were 
a number of coverage gaps,  though again we have  no 
way to measure that objectively. This section makes 
some informed guesses as to where those  gaps might be 
and suggests some ways of addressing them. 

Effectiveness  metrics  needed. Objective metrics 
are needed to evaluate new and existing test  strate- 
gies.  Defect coverage can only be estimated since the 
actual number of defects is unknowable. One method 
is to inject faults according to  the estimated defect  dis- 
tribution for a system and evaluate how  well different 
test  strategies  detect  them. Another possibility is to 
evaluate  test selection strategies  against various plan- 
ner  coverage metrics. This assumes higher test coverage 
is correlated with higher defect  coverage,  which  is not 
necessarily true. Empirical data from several planning 
applications would be needed to confirm the correlation. 

Value selection was ad hoc. Many parameters had 
large or infinite domains, and so only a few  of those 
could be tested. That selection was ad hoc, based pri- 
marily on the tester's  intuition.  This undoubtedly left 
coverage gaps. One way to close the  gap is to select 
values more intelligently based on a coverage metric. 
The metric would partition the values into equivalence 
classes that would exercise the domain model in qual- 
itatively different  ways. This would ensure adequate 
coverage  while minimizing the number of values  per  pa- 
rameter,  and  therefore minimizing the number of test 

For example, one  bug  detected serendipitously during 
integration depended upon the specific  values of three 
continuous parameters: the  time  to  start  up  the  IPS 
engine, the time to  the next optical navigation window, 
and  the  duration of the  turn from the  IPS  attitude 

C a s e s .  
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bugs found other pairs all pairs 

convergence 
correctness 
interface 28 
engine 22 
tota 

- values + values values 

Table 6: Defect Coverage by Test Type 

to  the first asteroid. An equation  relating  these pa- 
rameters  can crisply identify the boundary values that 
should be exercised.  Value selection based solely on the 
tester's  intuition is likely to miss many such interac- 
tions. Some possible metrics are discussed below. 

Was all-pairs testing sufficient? All pairs  testing 
will detect  any bug exercised by one or two parameter 
values, but only some bugs exercised by interactions of 
three or more parameters. For example, the  IPS bug 
discussed above was an interaction among three param- 
eter values and was not detected by all-pairs testing. An 
open question is whether or not  these bugs represent a 
significant fraction of the  total defects. Assuming they 
are significant, the next open question is  how to detect 
them with a manageable number of test cases. 

Table 6 shows the defects detected by the all-pairs, 
all-values, and  other  tests. The  other tests include a 
set of 22 interface tests  and bugs discovered incidentally 
during development. The all-pairs and all-values tests 
detected 88% of the correctness and convergence bugs, 
but only half of the interface and engine bugs. This 
data also show that all-pairs testing  detects only 20% 
more bugs than all-values testing alone. One reason 
for this sub-linear increase may be that many defects 
are exercised by many parameter value combinations, 
so that testing  all values  will find them.  The  table 
also shows that all-values misses more convergence bugs 
than correctness bugs with respect to all-pairs. This 
might be because convergence bugs are often caused by 
interactions among several domain constraints and  are 
therefore less  likely to be exercised by a single value. 

These results suggest that defect detection increases 
sub-linearly with the number, m, of parameter com- 
binations tested. That is, all-pairs detects fewer  new 
bugs than all-values, and all-triples detects even fewer 
new bugs. The point of diminishing returns is probably 
reached at some small value of m. An  effective strategy 
might therefore be to test rn-wise combinations of pa- 
rameter values and augment these  with a few carefully 
selected higher order combinations. The  test set should 
still be tractable for small m since the number of cases 
is proportional to (v /2)  log, k for k parameters  with v 
values each. Selection of additional cases would  have 
to be guided by a coverage metric based in turn on a 
formal analysis of the domain model. Tester  intuition 
is probably insufficient, as evidenced in value selection. 



Constraint Set 
1 Total 3  2 

all-pairs, v = 3 

1700 591 583 526 all-values, v = 5 
884 311 303 270 all-values, v = 3 
337 118 116 103 all-pairs, v = 5 
175 67 65 43 

Table 7: Test Set Sizes  for  All Goal-Pairs 

A coverage metric could also help select a value  for m 
that best balanced coverage against number of cases. 

Broader  goal  coverage  needed. RAX planner test- 
ing focused on mutations of the baseline profile.  Bugs 
exercised  only  by other goal sets would not have  been 
detected. For example, transitioning from the 6 day 
scenario to  the 2 day scenario compressed the schedule 
and eliminated the slack time between activities. This 
led to increased backtracking which caused new  conver- 
gence failures. 

Exercising the full goal space would eliminate this 
coverage gap. It is also necessary for future missions, 
which must be confident that any goal set (profile) they 
provide will produce a valid plan. The challenge  is how 
to provide this coverage with a manageable number of 
test cases. 

One possibility is to create  parameters that could 
specify any mission  profile and perform all-pairs testing 
on this space. This would require at least one parame- 
ter for the  start time, end time, and arguments for up 
to k instances of each goal type. For k = 3 the RAX 
model  would require 140 parameters.  These would re- 
place parameters 12-19 of Table 3. Testing v = 3 values 
for each parameter would require 175 cases, and v = 5 
values  would require 337 cases as shown in Table 7. 

This indicates that all-pairs testing of the full  goal 
space is feasible, and  that all-values testing might be 
feasible with sufficient test resources. Some additional 
issues  would still need to be addressed, though these 
are relatively straightforward.  First, profiles must be 
generated  automatically from parameter values. There 
were only a few profile mutations for RAX so they were 
generated manually, but  this is infeasible when there 
are hundreds of cases. 

Second, some parameter vectors specify unachievable 
or impossible goal sets that would  never occur in prac- 
tice. These cases have to be automatically identified 
and eliminated to avoid the high analysis cost of dis- 
criminating  test cases that failed due to impossible goals 
from those that failed due to a defect. Determining 
whether an  arbitrary goal set is  illegal  is at least as dif- 
ficult as planning, but  it should be possible to detect 
many classes of illegal goals with simpler algorithms 
(e.g., eliminate goals that  are mutually exclusive with 
any one or two domain constraints). 

Although all-pairs testing of this  parameter space is 
feasible, it may or may not be effective.  As discussed 
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above it may be necessary to test every k-wise combina- 
tions of parameter values  for some small k 2 2, and/or 
create  additional cases to exercise key goal interactions. 

Formal  Coverage Metrics Needed 
Formal coverage metrics are sorely needed for planner 
validation. Metrics based on analyses of the domain 
model can indicate which parameter values and goal 
combinations are likely to exercise the domain model 
in qualitatively different  ways. Formal metrics can 
identify coverage gaps and inform cost-risk assessments 
(number of cases  vs. coverage). 

Formal coverage metrics, such as code coverage, have 
been  develop d for critical systems but to our knowl- 
edge no metri E s have been developed for measuring cov- 
erage of a planner domain model. This is clearly an  area 
for future research. A few possibilities are discussed be- 
low. 

Constraint  Coverage. One possible coverage metric 
is the number of domain model constraints exercised. 
This is analoqous to a code coverage metric. For a given 
plan, it deter ines which constraints  it uses, and how 
those  constr  nts were instantiated. A good test suite 
should exerci 9 e each instantiation of each constraint at 
least once. 

Goal-Interaction  coverage. This coverage metric is 
targeted at ex rcising combinations of strongly  interact- 
ing goals. Sin e testing  all combinations is intractable, 
the idea is to analyze the domain model to determine 
how the goals interact,  and only test goal combinations 
that yield qu litatively different  conflicts.  For example, 
if goals A and B used  power, we would test cases where 
power  is  over i ubscribed by several A goals, by several 
B goals, and by a combination of both goals.. The cov- 
erage could be adjusted to balance risk against number 
of cases. One could limit the coverage to interactions 
above a given strength threshold. 

This metric would extend on prior work on de- 
tecting goal interactions in planners to improve up 
the planning earch, such as STATIC (Etzioni 1993), 
Alpine  (Knobsock 1994) and Universal Plans (Schop- 
pers 1987). STATIC generates a problem solving graph 
from the constraints and identifies search control rules 
for avoiding goal interactions. Alpine identifies interac- 
tions to find non-interacting subproblems,  and univer- 
sal plans (Schoppers 87) derive reactive control rules 
from  pair-wise  goal interactions. These  methods  are 
designed  for STRIPS-like planning systems and would 
have to be extended to deal with metric  time and aggre- 
gate resources, both of which are crucial for spacecraft 
applications. One of the  authors (Smith) is currently 
pursuing research in  this  area. 

Slack metric. Another approach being pursued by 
one of us (Muscettola) is to select plan start times by 
analyzing the slack in the baseline plans. This  approach 
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ffort, a ,,, 

Run cases and analyzers 
Review analyzer output 
File bug  reports 
Close bugs 
Total 

Table 8: Test Effort in Work  Weeks  by Task 

was  used to manually select plan start times once the 
final baseline was frozen just prior to  the experiment. 

Using our knowledge of the PS model, we manually 
identified boundary  times at which the topology of the 
plans would change. We identified 25 such boundary 
times and generated a total of 88 test cases correspond- 
ing to plans starting at, near, or between boundary 
times. This led to  the discovery of two  new  bugs. Fur- 
thermore, analysis of the  test results showed that  PS 
would fail to find a plan at only 0.5% of all possible 
start times. 

Test Aut omat ion 
Automation played a key  role in testing the Remote 
Agent planner. It was  used  for generating tests, run- 
ning tests,  and checking test  results for  convergence and 
plan correctness. Even so, the demand for human in- 
volvement  was high enough to limit the number of test 
cases to  just under three  hundred per six week test pe- 
riod, or an average of ten cases per work-day. 

The biggest demand for human involvement  was 
updating  the  test cases and infrastructure following 
changes to  the planner inputs, such as the domain 
model and mission  profile. The next largest effort  was 
in analyzing the test results. The  test effort by task is 
shown in Table 8. This section discusses the automa- 
tions that we found effective, the human bottlenecks, 
and  opportunities for further  automation. 

Testing  Tasks 
The Remote Agent software, including the planner, was 
released for testing every six to eight weeks. The plan- 
ner was exercised on the full set of test cases. A typical 
test cycle consisted of the following activities. 

The tester  updates  the set of test cases as required 
by any changes to  the planner input space. The  test 
harness is updated to accommodate any new inputs or 
interface changes. The harness invokes the planner on 
each test case and collects the  output.  The tester makes 
sure that  the cases ran properly, and re-runs any that 
failed  for irrelevant reasons (e.g., the ACS simulator did 
not start). 

The  test results are analyzed by  two oracles. The 
first checks  for convergence, and  the second  for plan 
correctness. The oracles say that a requirement failed, 
but  not why it failed. The tester reviews the  output  to 
determine the apparent cause and files a bug report. 
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.Finally, the analyst confirms purported bug fixes 
from the previous release as reported in the bug- 
tracking database. Each bug has one or more support- 
ing cases. The analyst  determines whether those cases 
passed, or whether the bug is still  open. In some in- 
stances, the tester may have to devise additional  tests 
to confirm the bug fix. 
Test  Automation Tools 
We employed several test  automation tools for validat- 
ing the Remote Agent planner, which are summarized 
below. 
0 Test  Harness. The harness invokes the planner 

with the  inputs for a given test case. Since the plan- 
ner is embedded in RAX the harness invokes the plan- 
ner  by hijacking the RAX internal planner interfaces, 
which are primarily file and socket based. It converts 
the parameter values  for each test case to input files: 
an initial state file, a planner parameter file  (seed 
and  latency), and a parameter file  for the ACS and 
NAV simulators. The mission  profiles  were too diffi- 
cult to generate  automatically and were constructed 
by hand. The remaining inputs  are sent over  socket 
connections. After running the planner it collects the 
output, which consists of the plan file  (if any),  time 
spent planning, search trace,  the initial state gener- 
ated by the mission manager, and  the simulator  and 
harness output. 

0 Plan  Correctness  Oracle. The oracle reads a plan 
into an assertions database  and  then verifies that  the 
assertions satisfy requirements expressed in first or- 
der predicate logic (FOPL).  This  tool  (Feather 1998; 
Feather & Smith. 1999) was implemented in AP5, a 
language that  supports these kinds of FOPL opera- 
tions. 
The oracle also  verified that  the plan engine enforced 
the plan model by automatically converting the do- 
main constraints  into equivalent FOPL  statements 
and checking the plan  against  them.  Constraints  are 
of the form  ”if token A exists in the plan, then  there 
also exists a token B such that  the temporal rela- 
tion R holds between A and B.” This maps  onto an 
equivalent FOPL requirement: A + B A R(A, B) .  

Analysis  Costs 
The two analysis tasks  are  determining whether a test 
case has failed, and why. The first task was performed 
by automated  test oracles. A trivial oracle tested for 
convergence: if the planner generates a plan within the 
time limit the  test cases passes, otherwise it fails. Auto- 
matically determining plan correctness requires a more 
sophisticated oracle. The oracle must measure correct- 
ness against some specification. The model is one such 
specification, but  there is little point in validating the 
model against itself. We need a second specification 
that can be easily validated by spacecraft experts. We 
developed a small set of requirements  in first order pred- 
icate logic (FOPL) and  had spacecraft experts validate 
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their English translations.’ The  automated  test ora- 
cle determined whether individual plans satisfied those 
FOPL  statements.  This  approach is not foolproof: the 
requirements may be incomplete, or their English trans- 
lations may be incorrect. Methods to deal with these 
vulnerabilities are needed. 

Once the oracles have identified the failed test cases, 
the next analysis task is to determine why they failed. 
For each failed test case, the analyst determines the 
apparent cause of the failure. Cases with similar causes 
are filed as a single bug report. This initial diagnosis 
provides guidance for finding the underlying bug, arid 
is critical for tracking progress. If the analyst simply 
stated  that  the planner failed to generate a plan on the 
following  fifty test cases, there could be fifty underlying 
bugs or just one. The initial diagnoses provide a much 
better  estimate of the number of outstanding bugs. 

Analyzing the test cases took eight to  ten work-days 
for a typical  test cycle and were largely unautomated. 
To determine why a plan failed to converge the analyst 
looked  for  excessive backtracking in the search trace or 
compared it  to  traces from similar cases that converged. 
Plan correctness failures also required review, although 
it was somewhat simpler (2-3 days vs. 8-10) since the 
incorrect plan provided context and  the oracle identified 
the offending plan elements. 

Automated diagnosis could reduce these efforts, espe- 
cially for determining why the planner failed to gener- 
ate a plan.  There  has been some work  in this  area  that 
could be applied or extended. Howe  (Howe & Cohen 
1995) performed statistical analyses of the planner trace 
to identify applications of repair operators to states that 
were strongly  correlated with failures. Chien (Chien 
1998) allowed the planner to generate a plan, when it 
was otherwise unable to, by ignoring problematic con- 
straints. Analysts were able to diagnose the underlying 
problem more quickly in the context of the resulting 
plan. 

Analysis costs could also be reduced by only running 
and analyzing tests  that exercise those  parts of the do- 
main model that have changed since the last release. 
One would  need to know  which parts of the domain 
model each test was intended to exercise. This infor- 
mation is not currently provided by the all-pairs strat- 
egy, but could be provided by a coverage metric: a test 
is intended to exercise whatever parts of the model it 
covers. A differencing algorithm could then determine 
what parts of the model had changed, where the  “parts” 
are defined  by the coverage metric. 

This  capability would also allow one to assess the 
cost of testing proposed model changes. This is an im- 
portant factor in deciding how (or even whether) to 
fix a bug near delivery, and  in assessing which  fixes or 
changes to include in a release. 

Impact of Model  and  Interface  Changes 
About half of the  test effort in each cycle  were the re- 
sult of changes to  the planner inputs  and interfaces, 
which includes changes to token definitions in the do- 

Version days tokens parameters 
chg I new 

015 
019 
026 +9 
029 +5 
FLT 03 I 6 
P’LT 05 I 2 I -12,+3 I 10 I 0 

Table 9: Profile Evolution 

relations 

+2 

main model and changes to  the baseline mission  profiles. 
Modifications to  the interfaces necessitated correspond- 
ing changes to  the test harness, and sometimes to  the 
input  parameter  table from which the test cases were 
generated. Most of the effort  was spent  not in making 
these changes, which generally took just a day or two, 
but in debugging them  and identifying undocumented 
changes. 

Unimplemented or incorrectly implemented changes 
resulted in test cases with unintended planner inputs. 
These inputs could cause a test case to fail  when it 
would  have  succeeded with the intended inputs, or to 
succeed  when it would  have  failed.  Some of these were 
obvious, and detected by dry  runs with a few test cases. 
Others were more subtle  and  not  detected  until  the 
analysis phase, at which point the cases had to be re- 
run and re-analyzed after fixing the harness. 

The planner interfaces consisted of the experiment 
and plan start times, and files  for the initial state, pro- 
file, planner parameters (seed and exec latency),  and 
simulator parameters (for NAV and ACS). One or more 
of these changed for every release, sometimes without 
notice. The instability of the interfaces was largely due 
to  the tight development schedule combined with par- 
allel development and testing. 

The profile and  initial state  inputs were particularly 
mutable as shown in Table 9 and Table 10. These files 
are comprised of tokens, and if these token definitions 
change in the domain model, these  input files must also 
change. 

This experience indicates that it is preferable to 
maintain  stable interfaces throughout  testing if at all 
possible. If interfaces must change, they should do so 
infrequently and any decision to change them must con- 
sider the  test impact. Appropriate software engineering 
practices can help minimize interface changes. Automa- 
tion can also help reduce the impact of changes when 
they  do occur. We present a few possibilities below. 
The first two  were  used  successfully  for RAX. 

Private  Parameters. To  minimize the impact from 
token parameter changes, we created the notion of a 
private parameter  in the domain specification language. 
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Token I Type 
navigate I goal 
op nav  window 
no op  nav 
waypoint 
no  op  nav 
op  nav window 
exec goal 
sep timer idle 
SEP  standby 
no activity 
micas health 

goal 
goal 

goal 
goal 

goal 

goal 
init 
init 
init 
init 

sep turn 
exec activitv I internal 

Public 
+3 
- 

+I 

+5 
+1 

Private Version 
026 

+8 026 
+4 

029 +1 
027 +l 
026 +1 
026 

029 
-1 019 
+1 019 
+l 029 
+1 029 
-1 029 

019 
026 

+1 029 

Table 10:  Token Parameter  Changes 

These were used when  new parameters were added to 
propagate values  needed  by new domain  constraints or 
heuristics, the most common reason for adding new ptw. 
rameters to  the model. Private  parameters do not ap- 
pear in the  initial state or profile, but  are  added auto- 
matically by the MM. Their values are  set automatically 
by propagation from other parameters. This  reduced 
the number of impactful parameter changes  from 30 to 
10 as shown in Table 10. 

Special  Test  Interfaces. To  reduce the impact of 
changes to  the  initial  state tokens and  the format of 
the  initial  state file, both of which  changed  frequently, 
we negotiated an  alternative  testing interface to  the 
initial-state generating function in the EXEC code. The 
test harness constructed  an initial state by sending ap- 
propriate  inputs to those functions, which then created 
the  initial  state in the correct format  with the correct 
tokens. The idea of negotiating stable  testing inter- 
faces applies to testing complex systems in general, and 
should ideally be considered during the design  phase. 

Automated  Inp-ut  Legality Checks. The effort of 
identifying unintended mission  profile and initial state 
inputs could  have been  greatly  reduced by automat- 
ically  checking their legality. One could  imagine au- 
tomating these checks  by  using an  abstraction of the 
domain model to determine  whether a set of goals are 
achievable  from the specified initial state. 

The debugging effort  for other  inputs could  have  been 
reduced in a similar fashion. The  syntax  and seman- 
tics of each input file  could be formally  specified and 
automatically verified against that specification. This 
would  have detected interface changes (the  input files 
would be invalid) and eliminated most of the debugging 
effort  by detecting input file  inconsistencies early and 
automatically. 

Conclusions 

The main requirements for the Remote Agent planner 
were to generate a plan within the  time limit, and  that 
the plan  be correct. The validation approach for the 
Remote Agent planner was to invoke the planner on 
several test cases, and  automatically check the results 
for  convergence and  plan correctness. Correctness was 
measured against a set of requirements developed  by 
the planning  team and validated by system and sub- 
system engineers. The cases  were selected according to 
an “all-pairs” selection strategy that exercised all pairs 
ofinput parameter values. The selected values  were at 
key boundary points and  extrema.  They were selected 
informally,  based on the  tester’s knowledge of the do- 
main model. 

The k&s focused on  mutations of the two baseline 
rnW&&i prufilea (goal sets) we expected to use in o p  
eratLomi. . . T $ i s  .approach reduced the number of test 
d, but was dnixaafem late changes to  the base- 
line, A better approach wouid be to exercise the goal 
ap&&wze coMetely. There  are a number of open re- 
sew& opportunities in this area. Formal coverage met- 
rice are sQrely m d e d  for planners. Such metrics could 
guide the t& selection and inform decisions on bal- 
ancing risk (coverage) against cost (number of cases). 
Clever metria may also be able to reduce the number of 
cases needed #or a given level o$ as c p a m d  to 
the straightforward metrics used  for the Rem&e Agent 
planner. Finally,  effectiveness metrics are needed to es- 
timate  and cOmpwe the defect  coverage of various test 
strategies. 

The number of manageable cases could be increased 
by reducing the demand for h u m n  involvement. Anal- 
ysis costs were  high because of the need to provide ini- 
tial diagnoses  for  cases  where the planner failed to gen- 
erate a plan, and  the need to review the plan checker’s 
output. Changes to  the planner interfaces, including 
changes to  the model, also created an overhead for u p  
dating  and debugging the  test harness. We suggested a 
number of  ways to mitigate these factors. 

,_ , . -4 

Automated diagnosis methods would eliminate one 
bottleneck, especially methods for determining why 
no plan was generated. Methods for identifying ille- 
gal inputs, especially  illegal goals and  initial  states, 
would eliminate some of the test-case debugging effort, 
as would  process improvements for limiting interface 
changes. 

The Remote Agent  was a real-world, mission-critical 
planning application. Our experience in validating the 
Remote Agent planner raised a number of  key issues. 
We addressed several of these, but many issues remain 
open. As planning systems are increasingly fielded  in 
critical applications the  importance of resolving these 
issues  grows as well.  Hopefully the Remote Agent  ex- 
perience will spark new research in this  important  area. 
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